Future World Oil Prices and the Potential for New Transportation Fuels

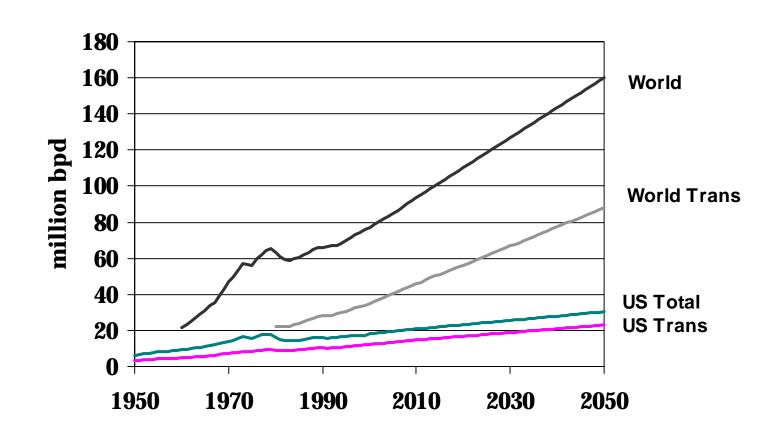
Philip D. Patterson Alicia K. Birky John D. Maples James S. Moore

http://www.ott.doe.gov/facts.html

January 11, 2000

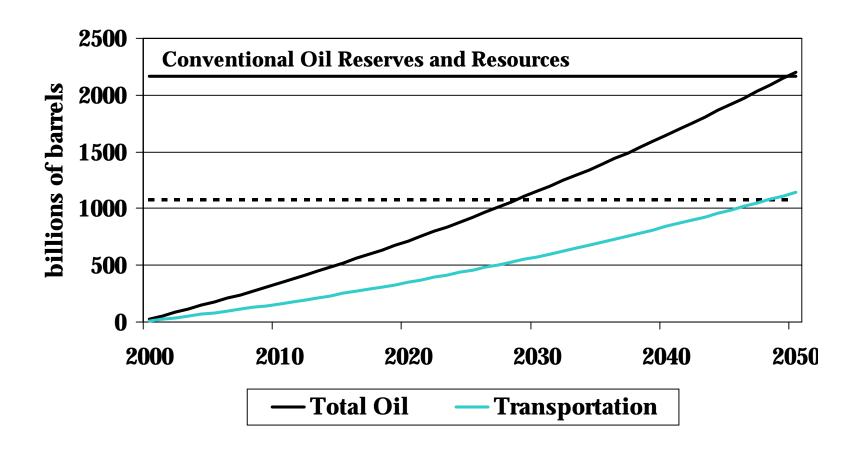
TRB 79th Annual Meeting

Outline



- Oil Use and Price Projections
- The Gately World Oil Model
- Alternative Fossil Fuels
- Renewable Fuels
- Conclusions

Growth in Oil Use



Source: Years 2000-2020, World - EIA IEO'99, US - EIA AEO'00 Years 2021-2050, World, US - extrapolation

Oil Resources and Cumulative World Oil Use

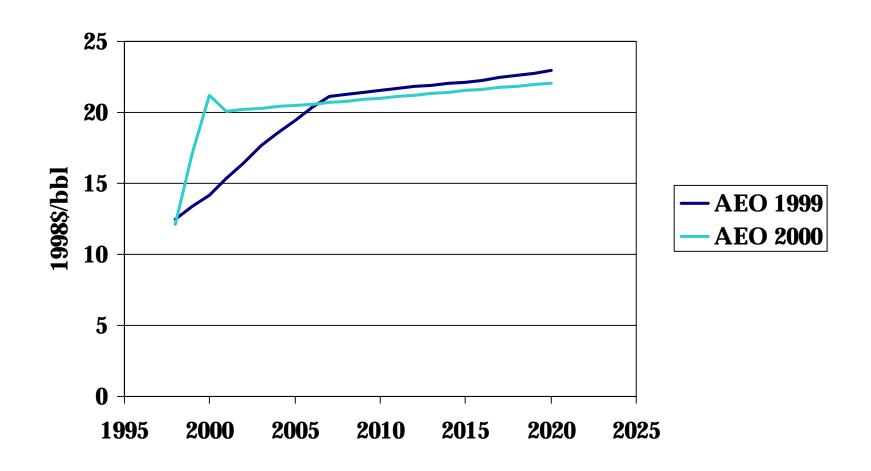
Factors that Affect Future Oil Price

- Population and economic growth
- End use efficiencies
- Producer actions: OPEC and OPEC+
- Price and availability of alternatives

OPEC+

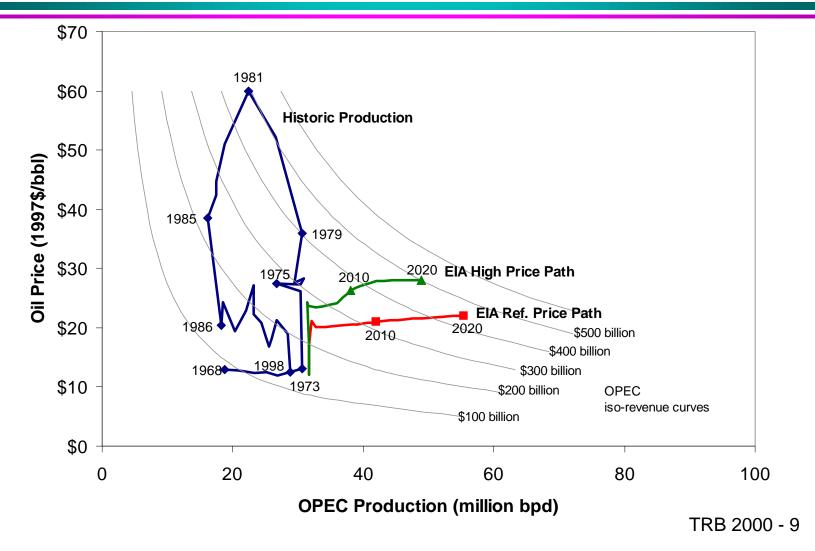
- World oil prices fell to \$9.93/barrel in January 1999.
- OPEC cut production by 1.7 million bpd.
- Mexico, Norway, Russia, and Oman collectively cut an additional 0.4 million bpd.
- The total cut amounted to only 3% of world oil production, but oil prices rebounded to \$23.69 by November 15, 1999 (DOE/EIA 1999).
- OPEC accounts for 42% of world oil production.
- "OPEC+" accounts for 62% of world oil production.
- The U.S. is the next largest producer at 9% (6 mbpd).

EIA Projections: Oil Price and OPEC Production



	2020 Projections			
	AEO 1999 Reference High Price		AEO 2000 Reference High Pric	
OPEC Production (million bpd)	53.5	46.7	55.5	48.9
Increase over 1997	80%	57%	86%	64%
World Oil Price (/bbl)	\$22.73	\$29.35	\$22.04	\$28.04
Revenue (billion \$)	\$444	\$500	\$446	\$500

EIA Reference Case: Oil Price Projections

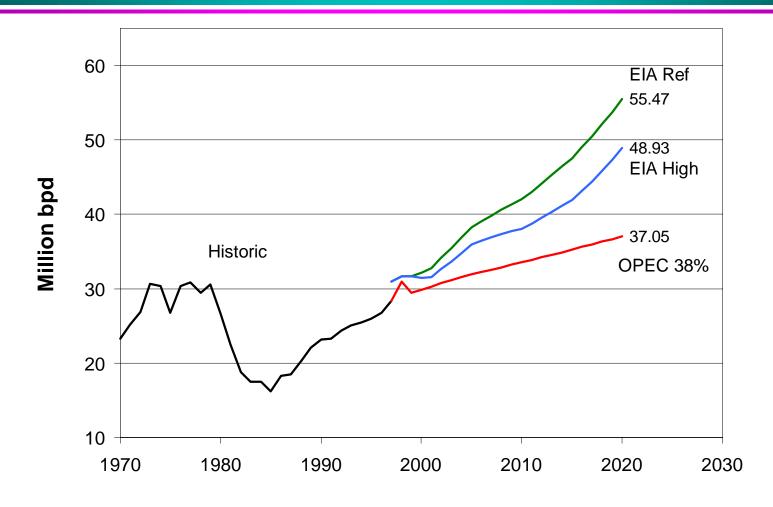


Oil Prices, OPEC Production and Revenue

Gately World Oil Model

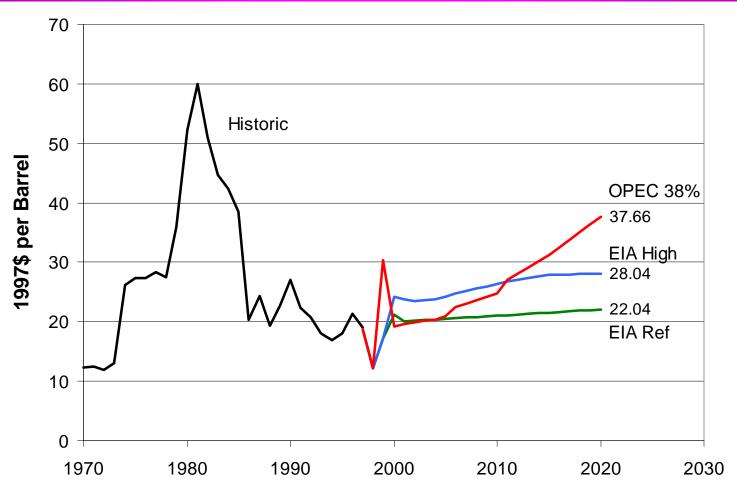
- Developed by Dermot Gately, NYU
- 9 world regions, same as EIA
- Oil demand
 - » determined by GDP growth, crude oil price, and lagged demand
 - » transportation & non-transportation oil
- Non-OPEC production determined by price with supply function fit to EIA Reference Case projections
- OPEC Production = World Demand Non-OPEC Production.
- Model parameters calibrated to EIA's International Energy Outlook
 1997 (IEO) (e.g. income elasticty of oil demand).
- Current work: Recalibration to IEO 1999; Addition of gas-to-liquids fuels
- Future work: Capability to posit OPEC+ strategic behavior

Gately Model Capabilities



- Model Solution in either of two ways:
 - » Given price-path, calculate World Oil Demand, Non-OPEC Supply, and the required level of OPEC Output
 - » Given projected levels of OPEC Output, calculate the market-clearing price for each year such that World Demand - Non-OPEC Supply = OPEC Output
- EIA's NEMS provides only the first capability, and therefore cannot analyze what production strategies are in OPEC's best interest.

Gately Model Results: OPEC Production



Gately Model Results: Oil Price

Fossil Fuel Quantities

	Billion Barrels of Oil Equivalent			:
Fossil Resource	Reserves	Resources	Additional Occurrences	Total
Oil				
Conventional	1,100	1,063		2,163
Unconventional	1,340	2,460	13,370	17,170
Natural Gas				
Conventional	1,030	2,050		3,080
Unconventional	1,410	1,890	2,840	6,140
Hydrates			137,500	137,500
Coal	7,350	17,570	20,860	45,780
Totals	12,230	25,033	174,570	211,833

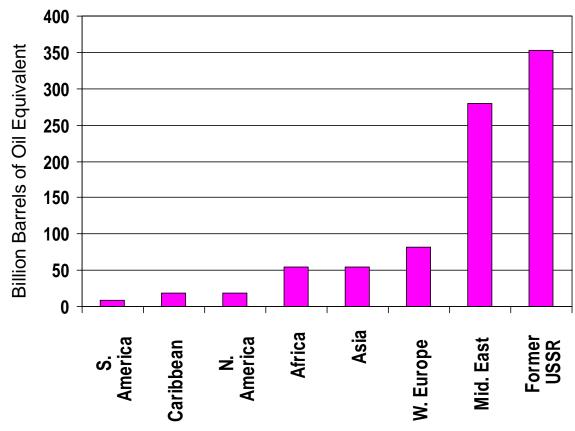
Note: Cumulative world oil use to date is <900 billion barrels.

Source: H.H. Rogner, "An Assessment of World Hydrocarbon Resources," 1997.

Energy Stock Definitions

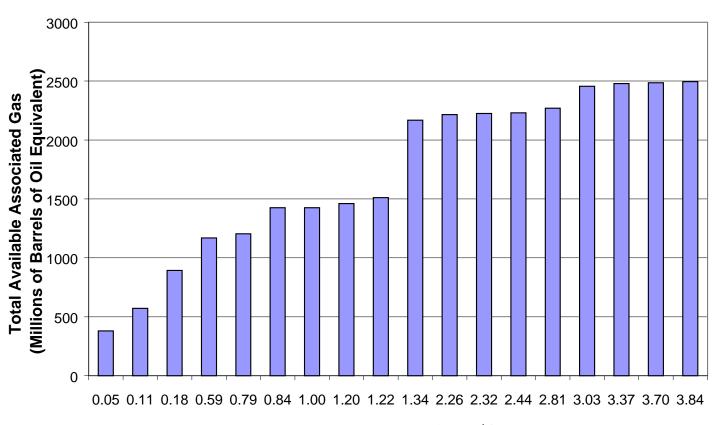
- Reserves Quantities in known reservoirs that have been measured and can be extracted economically.
- Resources Quantities that have not been measured with the same accuracy as reserves, and that may not be economically recoverable with today's technology and fuel prices.
- Additional Occurrences Quantities with unknown degrees of assurance and unknown or speculative economic significance.

Fuels from Natural Gas


- Compressed Natural Gas (CNG)
- Liquified Natural Gas (LNG)
- Fischer-Tropsch Diesel (FTD)
- Methanol

Sources of Stranded Natural Gas

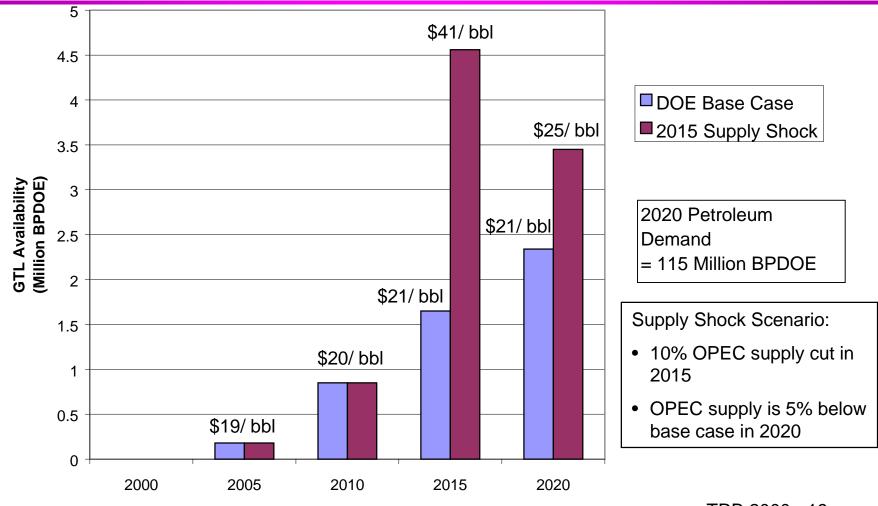
Stranded Gas Sources


- Remote Gas Wells & Fields
- Oil Wells
 - » Associated
 - Dissolved
 TCF/yr BBL/yr OE
 - » Vented/Flared/ 3.8 0.67
 Reinjected 11.0 1.95
- Coal Seams
- Petroleum Refining

World Prices and Availability of Associated Natural Gas

Associated Gas Availability Vs. Price

Maximum Gas Recovery Cost (\$/Million Btu)


TRB 2000 - 18

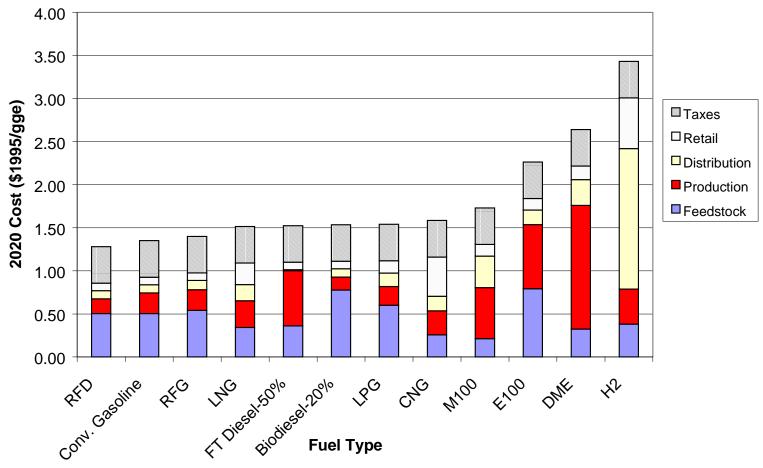
Source: Greene, ORNL/TM-1000/258Table 11

Projected Availability of GTL Fuels 2000-2020: Base Case & 2015 Oil Supply Shock

Year Source: Greene, ORNL/TM-1000/258Table 12

TRB 2000 - 19

Estimates of GTL



Source	Million bpd oil equiv.	Billion bbl/yr oil equiv.
Greene		
2015 base case	1.7	0.62
2015 oil shock case	4.5	1.64
Oil & Gas Journal		
Low	0.5	0.18
Medium	1.0-1.5	0.37-0.55
High	2.0-3.0	0.73-1.10
Arthur D. Little		
2015-2020	1.0-2.0	0.37-0.73
Further out	11.0	4.02
Alaska North Slope (2010)	0.2	0.07

Unit Costs of Potential 3X Fuels by Cost Element (2020)

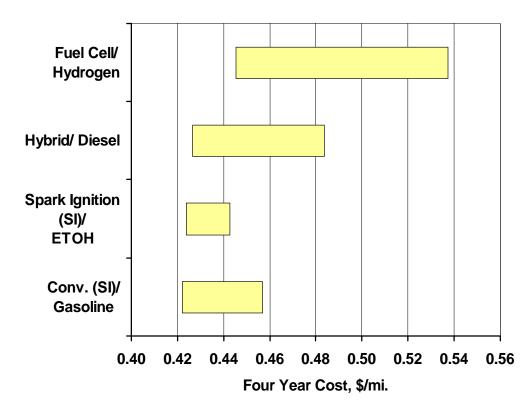
Source: Wang, PNGV Report; FTD adjusted for error in original report, as indicated by the author; taxes equalized for all fuels at \$0.424/gge.

Renewable Fuels Cost Estimates

Fuel	Source	\$/gge
Ethanol	OTT*, 2000 OTT*, 2020 Wang, PNGV Report, 2020	1.60 1.15 2.22
Hydrogen	S. Thomas, Directed Technologies Air Products Wang, PNGV Report, 2020	1.37 1.64 3.43

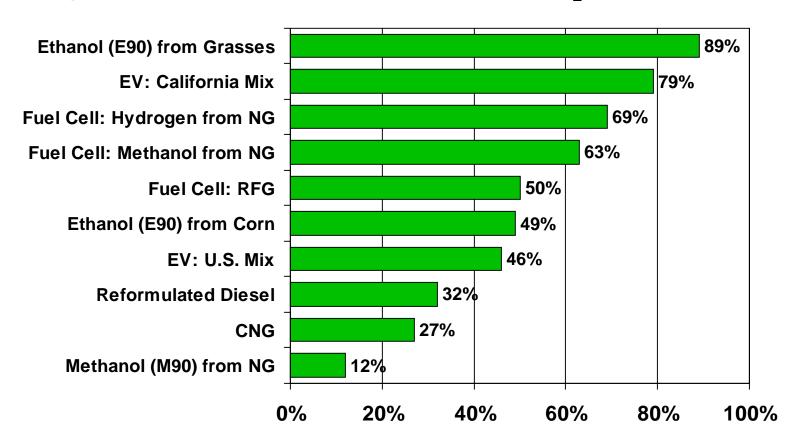
^{*} cellulosic w/ ethanol subsidy

World Ethanol Supply: Potential and Scenarios


Source	Million ha	billion bbl/yr oil equiv.	Comments
World			
Hall - potential (constrained)	890	25	Includes residues; includes conversion losses
IIASA - Global Energy Perspectives	390-610	8-20	Scenarios A and B, 2050; energy equivalent of all commercial biomass
US			
Hall - potential	116	3.5	Includes Canada
DOE/ORNL - potential	208	3.0	All cropland in energy crops; low yields
OTT high case	19	0.9	Includes residues
OTT QM 2001	-	0.12	2020

Light vehicles in the U.S. currently consume 3 billion barrels of oil equivalent per year.

Comparative Cost of Selected Technology/Fuel Combinations


- Comparisons are based on four-year present value costs for large cars.
- Fuel Costs:
 - » Gasoline: \$1.00-\$2.00/GGE
 - » ETOH: \$1.15-\$1.75/GGE
 - » F.T. Diesel: \$1.25-\$1.75/GGE
 - » H₂: \$1.64-\$3.43/GGE
- Incremental Vehicle Costs:
 - » Hybrid/Diesel: 5-18%
 - » Fuel Cell/H₂: 10-28%

Greenhouse Gas Emissions from Alternative Fuels

Light Vehicle Reductions in Life-Cycle CO₂ Emissions

Source: Michael Wang, GREET1.5

Categories of Alternatives to Oil

	Secure	Insecure
Inexpensive	Conventional NG	FT Diesel
		Methanol
		Stranded NG
Expensive	Domestic Ethanol	
	Renewable H ₂	
	Renewable Electricity	
	Hydrates	

Share of World Quantities

	OPEC	OPEC+
Current Oil Production	42%	62%
Oil Reserves	78%	88%
Natural Gas Reserves Vented and Flared Gas	44% 73%	80% 78%

Conclusions

- Future world oil price projections by EIA may be too low.
- OPEC+ is potentially more powerful than OPEC ever was.
- GTL will be the cheapest substitutes for oil, but they may have to overcome carbon emission problems
- Renewables will need policy assistance and lower cost to be competitive.
- Better estimates are needed of resources and annual amounts of alternatives that could be available.